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Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes phosphatidylcholine synthesis.
PEMT knockout mice have fatty livers, and it is possible that, in humans, nonalcoholic fatty liver
disease (NAFLD) might be associated with PEMT gene polymorphisms. DNA samples from 59
humans without fatty liver and from 28 humans with NAFLD were genotyped for a single nucleotide
polymorphism in exon 8 of PEMT which leads to a V175M substitution. V175M is a loss of function
mutation, as determined by transiently transfecting McArdle-RH7777 cells with constructs of
wildtype PEMT open reading frame or the V175M mutant. Met/Met at residue 175 (loss of function
SNP) occurred in 67.9% of the NAFLD subjects and in only 40.7% of control subjects (p< 0.03).
For the first time we report that a polymorphism of the human PEMT gene (V175M) is associated
with diminished activity and may confer susceptibility to NAFLD.
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Introduction
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common reason for abnormal liver
function, and may occur in as much as 25% of the population (1). NAFLD can progress to liver
cell necrosis, fibrosis and cirrhosis of the liver (1). The mechanisms underlying NAFLD are
not well understood. Obesity, diabetes and hypertriglyceridemia are predictive risk factors, but
it can appear in humans who are otherwise normal (2,3). Humans ingesting diets deficient in
the nutrient choline develop fatty liver (4,5) because phosphatidylcholine is required for hepatic
secretion of triacylglycerol in very low density lipoproteins (VLDL) (6–8).
Phosphatidylethanolamine N -methyltransferase (PEMT; EC 2.1.1.17) catalyzes de novo
synthesis of phosphatidylcholine in liver (9,10) and is responsible for about 30% of
phosphatidylcholine formed in liver; the remainder being formed from preexisting choline
moiety via an alternative pathway (11). PEMT knockout mice do not express any PEMT
activity in liver and completely depend on dietary choline intake to meet daily choline
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requirements (12,13). When fed a diet deficient in choline they develop severe fatty liver; a
choline supplemented diet prevents this (14) and can reverse hepatic damage if begun early
enough (15). The PEMT gene is highly polymorphic; 98 single-nucleotide polymorphisms
(SNPs) in PEMT were found in 48 Japanese individuals (16). It is possible that some of these
SNPs have functional significance, and if so, could make humans susceptible to fatty liver
when dietary intake of choline is low. We identified a variant that resulted in an amino acid
substitution (V175M) and report for the first time that this SNP results in partial loss of activity
of encoded PEMT and that this SNP occurs 1.7x as frequently in humans with NAFLD as in
normal controls.

MATERIALS AND METHODS
Cell culture and transient transfection

McArdle RH-7777 rat hepatoma cells (American Type Culture Collection (ATCC), Manassus,
VA) were maintained in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12; Gibco-BRL
Rockville, MD), 10% horse serum, 10% fetal bovine serum, 100 units/ml penicillin (Gibco-
BRL) and 100 μg/ml streptomycin sulfate (Gibco-BRL) at 37 °C under 5% CO2. On day 0,
cells were plated at a density of 1.5 × 106 cells/60-mm dish. When cells reached 70% confluence
they were transfected with test plasmids or mock transfected with empty expression vector
using Lipofectamine (Invitrogen, Carlsbad, CA) as per the manufacturer’s protocol. 24 hours
post transfection, the expression of enhanced green fluorescent protein (EGFP) was observed
under a green fluorescent microscope and the transfection efficiency was calculated based on
fluorescence intensity. 48 hours later, cells were harvested and total cellular homogenate and
total particulate fraction were prepared for protein assay and enzyme activity analysis.

PEMT activity assay
Liver homogenate or total particulate fraction from McArdle-RH7777 cells were assayed for
PEMT activity using a modified method of Ridgway and Vance (17,18). Briefly, PEMT activity
was assayed using 50 μg of protein in 125 mM Tris-HCl (pH 9.2; Mallincrodt, Paris, KY) and
5mM DTT buffer (Sigma, St. Louis, MO) in the presence of 200 μM S-adenosyl-L-methionine
containing 0.5 μCi of S-adenosyl-L-methionine (55.70 Ci/mmol; Amersham Biosciences,
Piscataway, NJ) and 0.4 mM exogenous phosphatidyldimethylethanolamine (P2, Avanti Polar-
lipids, Inc., Alabaster, AL). The reaction was carried out for 30 minutes at 37°C and stopped
by addition of chloroform/methanol/hydrochloric acid mixture (100:50:1, v/v). An aliquot of
the chloroform phase was applied to a silica gel thin layer chromatography (TLC) plate (Si250-
PA (19C)-Silica Gel, Baker, Inc., Phillipsburg, NJ) and was developed in chloroform:
methanol: acetic acid: water (50:30:5:2, v/v). Disintegrations per minute from [3H]-PtdCho
were determined in bands that co-migrated with authentic standards using liquid scintillation
spectrophotometry (Wallac 1410, Pharmacia LKB Nuclear Inc, Gaithersburg, MD).

PEMT protein expression assay
Proteins (25 μg) were separated by SDS-polyacrylamide gel electrophoresis and transferred to
a polyvinylidene difluoride membrane (Amersham Biosciences) which was probed with anti-
FLAG M2 antibody (Sigma), washed extensively with 1X PBS (Gibco) containing 0.1%
Tween 20 (Sigma), and then probed with horseradish peroxidase-conjugated goat anti-mouse
IgG (Pierce, Rockford, IL). PEMT-FLAG protein was visualized by a reaction with
Supersignal chemiluminescent substrate (Pierce) and exposed to x-ray film (Denville
Scientific, Metuchen, NJ). The film was scanned and the integrated optical densities of the
bands were measured using the ScionImage software (Scion Corporation, Frederick, MD,
USA).
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Recombinant plasmid construction /site-directed mutagenesis
Total RNA was extracted from an adult white male human’s liver using Trizol (Life
Technologies Inc., Rockville, MD) according to the manufacturer’s instructions. 3μg of total
RNA, previously treated with RNase-free DNase I (Life Technologies Inc.), was reverse
transcribed using an 18mer oligo(dT) primer and Superscript II reverse transcriptase
(Invitrogen, Carlsbad, CA) as per the manufacturer’s instructions. The oligonucleotide (5′MluI
PEMT) TAACACGCGTAGTTATGACCCGGCTGCTGGGCTA was used as the 5′ primer,
and the oligonucleotide
ATCATCATCCTTGTAGTCGAGCACGACGAAGCTGAGAATGTA (3′ PEMT -WT),
which adds 19 nucleotides encoding the FLAG epitope (DYKDDDDK), was used as the 3′primer.
The PCR product was subcloned into Nhe1 and Mlu1 multicloning sites of mammalian
expression vector pBI-EGFP-tet (Clontech, Palo Alto, CA), a bidirectional response plasmid
that allows simultaneous expression of both EGFP and PEMT-FLAG under the control of a
single tetracycline (doxycycline)-responsive element. With PEMT-WT as the template, site-
directed mutagenesis was conducted using GeneTailor™ Site-Directed Mutagenesis System
per manufacturer’s instructions (Invitrogen, Carlsbad, CA). Oligonucleotides 5′
TGGTGGCCCTCACCTACATAGTGGCTCTCCTATA3′ and 5′
TATGTAGGTGAGGGCCACCAGCACCGTCAG3′ were the forward and reverse primers to
introduce the M175V mutation (subsequently we realized that V175M is the SNP and V at 175
is the WT and data analysis was performed accordingly; see discussion).

Human liver specimens
40 human liver samples were obtained from the Liver Procurement and Distribution System
(LTPADS) (University of Minnesota, Minneapolis MN 55455, USA; funded by NIH contract
N01 DK92310). Of these 40 subjects, 28 had fatty liver and 12 had normal livers. Synopses
of tissue donors’ medical histories, including pathologist’s impression diagnosis on liver fat
content, were also obtained. The specimens were snap-frozen once removed from the organ
donors, delivered on dry ice and stored at −80°C until analysis.

Normal human blood collection
47 healthy volunteers were recruited for a protocol approved by the Institutional Review Board
at the University of North Carolina at Chapel Hill. These individuals consumed a diet adequate
in choline content and had no liver disease by review of medical history, serum liver function
tests (bilirubin, alanine aminotransferase, aspartate aminotransferase, creatine phosphokinase,
γ-glutamyl transpeptidase, lactic dehydrogenase, alkaline phosphatase, prothrombin time,
partial thromboplastin time, and albumin) and did not have fatty liver as assessed by magnetic
resonance imaging of liver (see below). Blood samples were obtained by venipuncture and
peripheral lymphocytes isolated by Ficoll-Hypaque gradient using Vacutainer® CPT™ tubes
with sodium citrate (Becton Dickinson, Franklin Lakes, NJ) (19,20) and prepared for SNP
analyses as described below.

Magnetic Resonance Imaging of liver
Changes in relative hepatic fat levels were determined utilizing a modified “In and Out of
Phase” magnetic resonance imaging (MRI) technique of Dixon (21–23) using a Siemens Vision
1.5T clinical MR system. Briefly, quantification of fat within the liver using MRI is possible
because of the resonant frequency differences between fat and water. The resonant frequency
differences in fat and water is reflected in the transverse magnetization changes and signal
intensity changes at particular time intervals. Utilizing a “breath-hold” fast field echo sequence
(FLASH; TE=2.2 msec and 4.5 msec, with a flip angle of 80°, and TR=140 msec) at an echo
time of 2.2 msec (TE) MRI signals from water and fat will be 180° out-of-phase with each
other while at a TE=4.5 msec the signals from fat and water will be in-phase with each other.
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MR images obtained from the in-phase and the out-of phase can then be processed to derive
the fat fraction from the differences in the MR image pixel intensity values. Serial FLASH
MRI studies utilizing a TE= 2.2 and 4.5 msec were performed on subjects. The MR image sets
were processed to determine the fat fraction in the liver utilizing software provided by Siemens
Medical Solutions (Malvern, PA). Five liver slices in each subject were analyzed and compared
to the fat fraction found in the spleen. Additionally, the relative changes in the levels of fat and
water were monitored utilizing a localized single volume proton magnetic resonance
spectroscopy technique (PRESS; TE=135, TR=1500 msec ) (24).

Genomic DNA extraction
Genomic DNA was extracted from liver tissues using TriZol (Life Technologies Inc.) and from
peripheral lymphocytes using PureGene (Gentra Systems, Minneapolis, MN) according to the
manufacturer’s instructions.

SNPs detection
DNA sequencing was performed on double stranded DNA templates obtained from genomic
DNA by PCR amplification. Exon 8 of PEMT was amplified with the oligonucleotides 5′
GGAGCACTTTGCCCCAGAATC3′ and 5′GACTTGGAGCCTTCAGAGCG3′ as forward
and reverse primers, respectively. PCR products were purified with QIAquick® PCR
Purification Kit 250 (QIAGEN Inc, Valencia CA) according to the manufacturer’s instructions.
Sequencing reactions were performed by the University of North Carolina at Chapel Hill
Genome Analysis Facility, using a capillary sequencing machine (model 3100, Applied
Biosystems, Foster City, CA). The sequences obtained were compared with ones stored in the
NCBI database (http://www.ncbi.nlm.nih.gov/entrez/, accession number AF294467) using
ClustalW multiple sequence alignment software (http://www.ebi.ac.uk/Tools/sequence.html).
Sequence homology identity was determined in accordance with criteria as previously
described (25).

Statistics
All data are presented as mean ± standard error of the mean. Differences in the prevalences of
V175M polymorphic genotypes in normal controls and patients with NAFLD were tested with
Fisher’s Exact Test (26). PEMT activity data were analyzed using one way analysis of variance
(27).

RESULTS
In Vitro study

Wildtype and V175M PEMT plasmids were transiently transfected into McArdle-RH7777
cells, which does not show endogenous PEMT activity (Figure 1). Transfection efficiency as
assessed by the expression of EGFP was not different in the three groups (vector, wildtype or
V175M; data not shown). The amount of PEMT protein expressed was assessed by measuring
the FLAG epitope expressed. Whether PEMT activity was expressed per mg protein or per
expressed FLAG, the V175M form of PEMT had significantly diminished activity (Figure 1).
Thus, V175M is a loss of function polymorphism. We analyzed enzyme activity using
saturating concentrations of substrates; it is possible that activity differences between the
polymorphic proteins might be different using other incubation conditions.

Subject demographics
In patients with NAFLD (n=28; all confirmed as NAFLD from liver biopsy specimens with
appropriate history), there were 12 males and 16 females, age range was 5–77 years (mean 51
± 3 years), with 23 Caucasians, 2 African Americans, 1 Hispanic and 1 Asian (ethnicity not
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known for 1 subject) and with body mass indices ranging from 18.4 to 48.5 (mean 30 ± 1.4
units; BMI unknown for 2 subjects). In control subjects (n=59; 12 confirmed normal from liver
biopsy specimens and 47 confirmed as having normal liver by MRI), there were 30 males and
29 females, age range was 5–72 years (mean 37.1 ± 2.1 years), with 37 Caucasians and 14
African Americans, 3 Hispanics, 3 Asians, 1 Native American, and 1 Trinidadian. Body mass
indices ranged from 15.3 to 33 (mean 24.7 ± 0.5 units) in the controls.

SNP detection
The V175M (G to A substitution) polymorphism in PEMT was differentially distributed in
controls and NAFLD patients. The allele frequency for G and A were 0.19 and 0.81 respectively
in 28 NAFLD patients. Among 59 normal controls, they are 0.39 and 0.61 respectively. The
frequencies of the three genotypes among patients were GG (Val/Val) 7.1%, GA (Val/Met)
25%, and AA (Met/Met) 67.9%. The frequencies of the three genotypes among normal controls
were GG, 18.6%, GA, 40.7%, and AA, 40.7%. (Table 1). Almost twice as many controls had
the GG and GA genotype than did the NAFLD patients, while the AA genotype was over
represented in the NAFLD patients compared with the normal controls (p=0.02 by two tailed
Fischer’s Exact Test). We observed no significant sexual dimorphism in this distribution. The
observed distribution of the V175 and M175 alleles is similar to that previously reported in the
public SNP databases.

Discussion
Nonalcoholic fatty liver disease is the most common reason for liver test abnormalities in the
general population (1). While it is usually identified in adults with obesity, it can also occur in
people with normal body weight without underlying diabetes and hyperlipidemia and has been
described in children as well (2,3). We identified a loss of function SNP in PEMT (G→A in
exon 8 of the PEMT gene in humans; results in a V175M substitution in the encoded protein)
that occurs more frequently in patients with NAFLD. This SNP was previously detected in
humans in a Japanese population but no functional significance was attributed to it (16).
Currently, there are no noninvasive tests to diagnose and stage NAFLD (1). Liver biopsy
remains the most sensitive diagnostic test but cannot distinguish NAFLD from other causes of
fatty liver disease, such as alcohol abuse (28). Identification of genetic predisposition factors
to this disease would help to identify individuals who are at risk for NAFLD and who warrant
evaluation for pre-symptomatic prediction and prevention.

The mechanism whereby a loss of function SNP in PEMT might be associated with NAFLD
involves the role of this enzyme in lipoprotein secretion from liver. Triacylglycerol is formed
in the liver and then secreted in very low density lipoprotein (VLDL). Synthesis of new
phosphatidylcholine molecules is required for VLDL formation, and when they are not
available fat droplets accumulate in the cytosol of liver cells (6,7,29). When diet is deficient
in choline (4,8,30) or when PEMT activity is inhibited or deleted (12,13,15,29), fatty liver
ensues.

In the literature, the sequence for human PEMT was originally reported to contain a methionine
at residue 175 (GenBank™ accession number AAK19172); however in later reports on human
PEMT and in the reported sequence for mouse, rat and cow (GenBank™ accession numbers
are NP_009100, AAH26796, Q08388, and AAQ01191, respectively) PEMT contains a valine
at this residue (Table 2). Therefore, we argue that in evolution the earliest sequence for PEMT
contains a valine at this position, and that the mutation to encode a methionine is the genetic
polymorphism.

We recognize that our observation is derived from a small study and that the group of NAFLD
patients was drawn from a national pool, while many of our control subjects were recruited in
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North Carolina. The demographics of the two groups were similar, though average BMI was
higher in the NAFLD group. Since high BMI can increase incidence of fatty liver, it is possible
that the PEMT SNP we report is somehow associated with factors that increase BMI. However,
it is unlikely that this is the sole reason that this SNP is associated with risk for NAFLD.

The relatively common occurrence of this loss of function SNP (81% of controls and 93% of
NAFLD have at least one allele) suggests that it provides some evolutionary advantage to
humans. We previously reported (31) that mice in which this gene is deleted have excess S-
adenosylmethionine available for methylation reactions because PEMT activity uses an
appreciable portion of available methyl groups for formation of choline. Perhaps, when humans
eat enough choline in their diet, the V175M SNP is beneficial because it reduces waste of
methyl-groups for making choline moiety. Sometimes a SNP is selected for because it protects
against disease (32). Human erythrocytes infected with Plasmodium develop new pathways
for accumulating choline from plasma (33). Up to 45% of the malaria parasite is composed of
phosphatidylcholine and the malaria parasite actively accumulates choline from its host (34).
Finally, there is a clear correlation between antimalarial activity of some drugs and their ability
to inhibit choline uptake into the parasite (35). Perhaps the V175M SNP that we describe
diminishes the availability of choline in the human host and thereby impairs the replication of
the malaria parasite. Whatever the reason, it is interesting that the V175M SNP is so prevalent
in humans.

It is interesting that the incidence of NAFLD is lower in premenopausal women than in men
or postmenopausal women (36). This would be consistent with our hypothesis that low PEMT
activity is a risk factor for developing NAFLD. Female rats are less likely to develop fatty liver
when fed choline deficient diets than are male rats (37), because females have greater capacity
to form the choline moiety de novo via PEMT pathway in liver. It is estimated that female rats
have 10–50% more PEMT activity than do males (38,39). A woman’s capacity to form the
choline moiety de novo may be highest before menopause because estrogens increase PEMT
activity in humans (40) and in castrated-rats (41). Thus, premenopausal women may be less
sensitive to a loss of function SNP in PEMT because they have excess PEMT activity as
compared to men or postmenopausal women.

The requirement for choline (from diet or from PEMT synthesis) is spared, in part, by the
availability of methyl groups from 1-carbon metabolism (via methyltetrahydrofolate) (42). It
is possible that the PEMT SNP we describe will interact with other commonly known SNPs
in humans. For example, the thermolabile variant (677C→T) of 5,10-
methylenetetrahydrofolate reductase (MTHFR, E.C. 1.5.1.20) occurs in 15–30% of humans
(43). We found that mice in which MTHFR was deleted develop fatty liver that resolves when
mice are fed the choline metabolite betaine (43). These mice require more choline or betaine
because homocysteine remethylation to methionine, in the absence of 1-carbon units via the
folate pathway shifts to a pathway that uses choline as a precursor. Homocysteine can be
remethylated to methionine by methionine synthase, using 5-methylfolate which is supplied
by MTHFR (43). Alternatively, betaine:homocysteine methyltransferase (BHMT, EC 2.1.1.5)
catalyzes a methyl transfer from betaine to homocysteine (43). When 5-methylfolate is not
available, more betaine is required. Thus, humans who have diminished capacity to synthesize
choline moiety via PEMT activity, and who have diminished capacity to form 5-methylfolate
will have difficulty producing increased betaine from choline when it is needed for
homocysteine methylation.

We studied a relatively small number of subjects (28 with NAFLD and 59 controls); it would
be valuable to characterize this SNP in larger populations. It would also be useful to determine
whether diets high in choline reduce hepatic steatosis in humans with this SNP. We recently
published data on choline content of foods (44), and the US Department of Agriculture
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maintains an updated food composition table online (http://www.nal.usda.gov/fnic/foodcomp/
Data/Choline/Choline.html). We are currently examining whether there are other loss of
function SNPs in the PEMT gene.
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Figure 1.
Val to Met substitution at residue 175 of PEMT leads to expression of PEMT with reduced
activity.
McArdle-RH7777 cells were transiently transfected with plasmids containing sequence for
wild type PEMT (WT) or V175M mutated form (V175M) or vector only (Vector). 50 μg of
total particulate protein from cells harvested 48 hr after transfection was used for PEMT activity
assay in the presence of 200 μM AdoMet. Results are expressed as mean ± standard error for
n=3/group. Open bars: Activity expressed as pmol phosphatidylcholine formed per mg protein
per hour. Hatched bars: Activity expressed as pmol phosphatidylcholine formed per integrated
optical density of FLAG epitope per hour. The experiment was duplicated with similar results.
* = p<0.01 by one way ANOVA; ** = p<0.005 by one way ANOVA.

Song et al. Page 10

FASEB J. Author manuscript; available in PMC 2005 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Song et al. Page 11

Table 1
PEMT Exon 8 SNP distribution in human subjects.

Percent of Population
GG Val/Val GA Val/Met AA Met/Met

NAFLD (n=28) 7.1 25.0 67.9*
Controls (n=59) 18.6 40.7 40.7

DNA was isolated from subjects with nonalcoholic fatty liver disease (NAFLD) and from controls with normal liver fat and was analyzed for the V175M
SNP. Data are presented as percent of group (n/group indicated in parentheses).

*
= p<0.03 that AA genotype (loss of function SNP) occurred more frequently in NAFLD patients than in control subjects by two-tailed Fisher’s Exact

Test.
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Table 2
Amino acid sequence alignment of mammalian PEMT orthologs.

RAT LDNPMYWGSTANYLGWALMHASPTGLLLTVLVALVYVVALLFE 180
MOUSE LDNPMYWGSTANYLGWALMHASPTGLLLTVLVAIVYVVALLYE 180
HUMAN LDNPMYWGSTANYLGWAIMHASPTGLLLTVLVALTYIVALLYE 180
COW LDNPMYWGSTAIYLGWAIVHASPTGLLLTALVALIYMVAIVYE 180

***********:***** :**********:***: * **:: *

175V is conserved in various mammalian PEMT sequences. GenBankTM accession numbers for rat, mouse, human and cow are Q08388, AAH26796,
NP_009100 and AAQ01191, respectively.

*
 = completely conserved; : = human same as rat.
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